Thursday, 29 March 2012
Multiple Correspondence Analysis: a multidimensional and relational technique
Presentation by Celine Teney (WZB) at the CO:STA Colloquium
Multiple correspondence analysis can be conceived as the counterpart of Principal Component Analysis for categorical data (i.e. with a finite number of response categories). MCA is a geometric approach that represents and models data sets as clouds of points in a multidimensional Euclidean space. The interpretation of the data is based on these clouds of points. As will be shown in the empirical example, the results from a MCA can be combined with other inferential techniques and variance analysis in order to get an integrated framework of interpretation. MCA has become known through the work of Pierre Bourdieu, in particular his maps of social space in France in the Distinction (1984).
Resources: